Metamath Proof Explorer


Theorem his2sub

Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion his2sub A B C A - B ih C = A ih C B ih C

Proof

Step Hyp Ref Expression
1 hvsubval A B A - B = A + -1 B
2 1 oveq1d A B A - B ih C = A + -1 B ih C
3 2 3adant3 A B C A - B ih C = A + -1 B ih C
4 neg1cn 1
5 hvmulcl 1 B -1 B
6 4 5 mpan B -1 B
7 ax-his2 A -1 B C A + -1 B ih C = A ih C + -1 B ih C
8 6 7 syl3an2 A B C A + -1 B ih C = A ih C + -1 B ih C
9 ax-his3 1 B C -1 B ih C = -1 B ih C
10 4 9 mp3an1 B C -1 B ih C = -1 B ih C
11 hicl B C B ih C
12 11 mulm1d B C -1 B ih C = B ih C
13 10 12 eqtrd B C -1 B ih C = B ih C
14 13 oveq2d B C A ih C + -1 B ih C = A ih C + B ih C
15 14 3adant1 A B C A ih C + -1 B ih C = A ih C + B ih C
16 8 15 eqtrd A B C A + -1 B ih C = A ih C + B ih C
17 hicl A C A ih C
18 17 3adant2 A B C A ih C
19 11 3adant1 A B C B ih C
20 18 19 negsubd A B C A ih C + B ih C = A ih C B ih C
21 3 16 20 3eqtrd A B C A - B ih C = A ih C B ih C