Metamath Proof Explorer


Theorem his35

Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion his35 A B C D A C ih B D = A B C ih D

Proof

Step Hyp Ref Expression
1 his5 B C D C ih B D = B C ih D
2 1 3expb B C D C ih B D = B C ih D
3 2 adantll A B C D C ih B D = B C ih D
4 3 oveq2d A B C D A C ih B D = A B C ih D
5 simpll A B C D A
6 simprl A B C D C
7 hvmulcl B D B D
8 7 ad2ant2l A B C D B D
9 ax-his3 A C B D A C ih B D = A C ih B D
10 5 6 8 9 syl3anc A B C D A C ih B D = A C ih B D
11 cjcl B B
12 11 ad2antlr A B C D B
13 hicl C D C ih D
14 13 adantl A B C D C ih D
15 5 12 14 mulassd A B C D A B C ih D = A B C ih D
16 4 10 15 3eqtr4d A B C D A C ih B D = A B C ih D