Metamath Proof Explorer


Theorem his35i

Description: Move scalar multiplication to outside of inner product. (Contributed by NM, 1-Jul-2005) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses his35.1 A
his35.2 B
his35.3 C
his35.4 D
Assertion his35i A C ih B D = A B C ih D

Proof

Step Hyp Ref Expression
1 his35.1 A
2 his35.2 B
3 his35.3 C
4 his35.4 D
5 his35 A B C D A C ih B D = A B C ih D
6 1 2 3 4 5 mp4an A C ih B D = A B C ih D