Metamath Proof Explorer


Theorem his52

Description: Associative law for inner product. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion his52 A B C B ih A C = A B ih C

Proof

Step Hyp Ref Expression
1 cjcl A A
2 his5 A B C B ih A C = A B ih C
3 1 2 syl3an1 A B C B ih A C = A B ih C
4 cjcj A A = A
5 4 oveq1d A A B ih C = A B ih C
6 5 3ad2ant1 A B C A B ih C = A B ih C
7 3 6 eqtrd A B C B ih A C = A B ih C