Metamath Proof Explorer


Theorem hisubcomi

Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypotheses hisubcom.1 A
hisubcom.2 B
hisubcom.3 C
hisubcom.4 D
Assertion hisubcomi A - B ih C - D = B - A ih D - C

Proof

Step Hyp Ref Expression
1 hisubcom.1 A
2 hisubcom.2 B
3 hisubcom.3 C
4 hisubcom.4 D
5 2 1 hvnegdii -1 B - A = A - B
6 4 3 hvnegdii -1 D - C = C - D
7 5 6 oveq12i -1 B - A ih -1 D - C = A - B ih C - D
8 neg1cn 1
9 2 1 hvsubcli B - A
10 4 3 hvsubcli D - C
11 8 8 9 10 his35i -1 B - A ih -1 D - C = -1 1 B - A ih D - C
12 neg1rr 1
13 cjre 1 1 = 1
14 12 13 ax-mp 1 = 1
15 14 oveq2i -1 1 = -1 -1
16 ax-1cn 1
17 16 16 mul2negi -1 -1 = 1 1
18 1t1e1 1 1 = 1
19 15 17 18 3eqtri -1 1 = 1
20 19 oveq1i -1 1 B - A ih D - C = 1 B - A ih D - C
21 9 10 hicli B - A ih D - C
22 21 mulid2i 1 B - A ih D - C = B - A ih D - C
23 11 20 22 3eqtri -1 B - A ih -1 D - C = B - A ih D - C
24 7 23 eqtr3i A - B ih C - D = B - A ih D - C