Metamath Proof Explorer


Theorem hl0lt1N

Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011) (New usage is discouraged.)

Ref Expression
Hypotheses hl0lt1.s < ˙ = < K
hl0lt1.z 0 ˙ = 0. K
hl0lt1.u 1 ˙ = 1. K
Assertion hl0lt1N K HL 0 ˙ < ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 hl0lt1.s < ˙ = < K
2 hl0lt1.z 0 ˙ = 0. K
3 hl0lt1.u 1 ˙ = 1. K
4 eqid Base K = Base K
5 4 1 2 3 hlhgt2 K HL x Base K 0 ˙ < ˙ x x < ˙ 1 ˙
6 hlpos K HL K Poset
7 6 adantr K HL x Base K K Poset
8 hlop K HL K OP
9 8 adantr K HL x Base K K OP
10 4 2 op0cl K OP 0 ˙ Base K
11 9 10 syl K HL x Base K 0 ˙ Base K
12 simpr K HL x Base K x Base K
13 4 3 op1cl K OP 1 ˙ Base K
14 9 13 syl K HL x Base K 1 ˙ Base K
15 4 1 plttr K Poset 0 ˙ Base K x Base K 1 ˙ Base K 0 ˙ < ˙ x x < ˙ 1 ˙ 0 ˙ < ˙ 1 ˙
16 7 11 12 14 15 syl13anc K HL x Base K 0 ˙ < ˙ x x < ˙ 1 ˙ 0 ˙ < ˙ 1 ˙
17 16 rexlimdva K HL x Base K 0 ˙ < ˙ x x < ˙ 1 ˙ 0 ˙ < ˙ 1 ˙
18 5 17 mpd K HL 0 ˙ < ˙ 1 ˙