Metamath Proof Explorer


Theorem hladdf

Description: Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1 X = BaseSet U
hladdf.2 G = + v U
Assertion hladdf U CHil OLD G : X × X X

Proof

Step Hyp Ref Expression
1 hladdf.1 X = BaseSet U
2 hladdf.2 G = + v U
3 hlnv U CHil OLD U NrmCVec
4 1 2 nvgf U NrmCVec G : X × X X
5 3 4 syl U CHil OLD G : X × X X