Metamath Proof Explorer


Theorem hlass

Description: Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1 X = BaseSet U
hladdf.2 G = + v U
Assertion hlass U CHil OLD A X B X C X A G B G C = A G B G C

Proof

Step Hyp Ref Expression
1 hladdf.1 X = BaseSet U
2 hladdf.2 G = + v U
3 hlnv U CHil OLD U NrmCVec
4 1 2 nvass U NrmCVec A X B X C X A G B G C = A G B G C
5 3 4 sylan U CHil OLD A X B X C X A G B G C = A G B G C