Metamath Proof Explorer


Theorem hlatexch4

Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013)

Ref Expression
Hypotheses hlatexch4.j ˙ = join K
hlatexch4.a A = Atoms K
Assertion hlatexch4 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P ˙ R = Q ˙ S

Proof

Step Hyp Ref Expression
1 hlatexch4.j ˙ = join K
2 hlatexch4.a A = Atoms K
3 simp11 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S K HL
4 simp2l K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S R A
5 simp2r K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S S A
6 eqid K = K
7 6 1 2 hlatlej2 K HL R A S A S K R ˙ S
8 3 4 5 7 syl3anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S S K R ˙ S
9 simp33 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P ˙ Q = R ˙ S
10 8 9 breqtrrd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S S K P ˙ Q
11 simp12 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P A
12 simp13 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S Q A
13 simp32 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S Q S
14 13 necomd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S S Q
15 6 1 2 hlatexch2 K HL S A P A Q A S Q S K P ˙ Q P K S ˙ Q
16 3 5 11 12 14 15 syl131anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S S K P ˙ Q P K S ˙ Q
17 10 16 mpd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P K S ˙ Q
18 1 2 hlatjcom K HL S A Q A S ˙ Q = Q ˙ S
19 3 5 12 18 syl3anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S S ˙ Q = Q ˙ S
20 17 19 breqtrd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P K Q ˙ S
21 6 1 2 hlatlej2 K HL P A Q A Q K P ˙ Q
22 3 11 12 21 syl3anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S Q K P ˙ Q
23 22 9 breqtrd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S Q K R ˙ S
24 6 1 2 hlatexch2 K HL Q A R A S A Q S Q K R ˙ S R K Q ˙ S
25 3 12 4 5 13 24 syl131anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S Q K R ˙ S R K Q ˙ S
26 23 25 mpd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S R K Q ˙ S
27 3 hllatd K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S K Lat
28 eqid Base K = Base K
29 28 2 atbase P A P Base K
30 11 29 syl K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P Base K
31 28 2 atbase R A R Base K
32 4 31 syl K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S R Base K
33 28 1 2 hlatjcl K HL Q A S A Q ˙ S Base K
34 3 12 5 33 syl3anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S Q ˙ S Base K
35 28 6 1 latjle12 K Lat P Base K R Base K Q ˙ S Base K P K Q ˙ S R K Q ˙ S P ˙ R K Q ˙ S
36 27 30 32 34 35 syl13anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P K Q ˙ S R K Q ˙ S P ˙ R K Q ˙ S
37 20 26 36 mpbi2and K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P ˙ R K Q ˙ S
38 simp31 K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P R
39 6 1 2 ps-1 K HL P A R A P R Q A S A P ˙ R K Q ˙ S P ˙ R = Q ˙ S
40 3 11 4 38 12 5 39 syl132anc K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P ˙ R K Q ˙ S P ˙ R = Q ˙ S
41 37 40 mpbid K HL P A Q A R A S A P R Q S P ˙ Q = R ˙ S P ˙ R = Q ˙ S