Metamath Proof Explorer


Theorem hlatjrot

Description: Rotate lattice join of 3 classes. Frequently-used special case of latjrot for atoms. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses hlatjcom.j ˙ = join K
hlatjcom.a A = Atoms K
Assertion hlatjrot K HL P A Q A R A P ˙ Q ˙ R = R ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙ = join K
2 hlatjcom.a A = Atoms K
3 1 2 hlatj32 K HL P A Q A R A P ˙ Q ˙ R = P ˙ R ˙ Q
4 1 2 hlatjcom K HL P A R A P ˙ R = R ˙ P
5 4 3adant3r2 K HL P A Q A R A P ˙ R = R ˙ P
6 5 oveq1d K HL P A Q A R A P ˙ R ˙ Q = R ˙ P ˙ Q
7 3 6 eqtrd K HL P A Q A R A P ˙ Q ˙ R = R ˙ P ˙ Q