Metamath Proof Explorer


Theorem hlatjrot

Description: Rotate lattice join of 3 classes. Frequently-used special case of latjrot for atoms. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses hlatjcom.j ˙=joinK
hlatjcom.a A=AtomsK
Assertion hlatjrot KHLPAQARAP˙Q˙R=R˙P˙Q

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙=joinK
2 hlatjcom.a A=AtomsK
3 1 2 hlatj32 KHLPAQARAP˙Q˙R=P˙R˙Q
4 1 2 hlatjcom KHLPARAP˙R=R˙P
5 4 3adant3r2 KHLPAQARAP˙R=R˙P
6 5 oveq1d KHLPAQARAP˙R˙Q=R˙P˙Q
7 3 6 eqtrd KHLPAQARAP˙Q˙R=R˙P˙Q