Metamath Proof Explorer


Theorem hlatmstcOLDN

Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in Kalmbach p. 140; also remark in BeltramettiCassinelli p. 98. ( hatomistici analog.) (Contributed by NM, 21-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses hlatmstc.b B = Base K
hlatmstc.l ˙ = K
hlatmstc.u U = lub K
hlatmstc.a A = Atoms K
Assertion hlatmstcOLDN K HL X B U y A | y ˙ X = X

Proof

Step Hyp Ref Expression
1 hlatmstc.b B = Base K
2 hlatmstc.l ˙ = K
3 hlatmstc.u U = lub K
4 hlatmstc.a A = Atoms K
5 hlomcmat K HL K OML K CLat K AtLat
6 1 2 3 4 atlatmstc K OML K CLat K AtLat X B U y A | y ˙ X = X
7 5 6 sylan K HL X B U y A | y ˙ X = X