Metamath Proof Explorer


Theorem hlbtwn

Description: Betweenness is a sufficient condition to swap half-lines. (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hltr.d φ D P
hlbtwn.1 φ D C I B
hlbtwn.2 φ B C
hlbtwn.3 φ D C
Assertion hlbtwn φ A K C B A K C D

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hltr.d φ D P
9 hlbtwn.1 φ D C I B
10 hlbtwn.2 φ B C
11 hlbtwn.3 φ D C
12 10 11 2thd φ B C D C
13 7 adantr φ A C I B G 𝒢 Tarski
14 6 adantr φ A C I B C P
15 4 adantr φ A C I B A P
16 8 adantr φ A C I B D P
17 5 adantr φ A C I B B P
18 simpr φ A C I B A C I B
19 9 adantr φ A C I B D C I B
20 1 2 13 14 15 16 17 18 19 tgbtwnconn3 φ A C I B A C I D D C I A
21 eqid dist G = dist G
22 7 adantr φ B C I A G 𝒢 Tarski
23 6 adantr φ B C I A C P
24 8 adantr φ B C I A D P
25 5 adantr φ B C I A B P
26 4 adantr φ B C I A A P
27 9 adantr φ B C I A D C I B
28 simpr φ B C I A B C I A
29 1 21 2 22 23 24 25 26 27 28 tgbtwnexch φ B C I A D C I A
30 29 olcd φ B C I A A C I D D C I A
31 20 30 jaodan φ A C I B B C I A A C I D D C I A
32 7 adantr φ A C I D G 𝒢 Tarski
33 6 adantr φ A C I D C P
34 4 adantr φ A C I D A P
35 8 adantr φ A C I D D P
36 5 adantr φ A C I D B P
37 simpr φ A C I D A C I D
38 9 adantr φ A C I D D C I B
39 1 21 2 32 33 34 35 36 37 38 tgbtwnexch φ A C I D A C I B
40 39 orcd φ A C I D A C I B B C I A
41 7 adantr φ D C I A G 𝒢 Tarski
42 6 adantr φ D C I A C P
43 8 adantr φ D C I A D P
44 4 adantr φ D C I A A P
45 5 adantr φ D C I A B P
46 11 necomd φ C D
47 46 adantr φ D C I A C D
48 simpr φ D C I A D C I A
49 9 adantr φ D C I A D C I B
50 1 2 41 42 43 44 45 47 48 49 tgbtwnconn1 φ D C I A A C I B B C I A
51 40 50 jaodan φ A C I D D C I A A C I B B C I A
52 31 51 impbida φ A C I B B C I A A C I D D C I A
53 12 52 3anbi23d φ A C B C A C I B B C I A A C D C A C I D D C I A
54 1 2 3 4 5 6 7 ishlg φ A K C B A C B C A C I B B C I A
55 1 2 3 4 8 6 7 ishlg φ A K C D A C D C A C I D D C I A
56 53 54 55 3bitr4d φ A K C B A K C D