Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|
2 |
|
ishlg.i |
|
3 |
|
ishlg.k |
|
4 |
|
ishlg.a |
|
5 |
|
ishlg.b |
|
6 |
|
ishlg.c |
|
7 |
|
hlln.1 |
|
8 |
|
hltr.d |
|
9 |
|
hlbtwn.1 |
|
10 |
|
hlbtwn.2 |
|
11 |
|
hlbtwn.3 |
|
12 |
10 11
|
2thd |
|
13 |
7
|
adantr |
|
14 |
6
|
adantr |
|
15 |
4
|
adantr |
|
16 |
8
|
adantr |
|
17 |
5
|
adantr |
|
18 |
|
simpr |
|
19 |
9
|
adantr |
|
20 |
1 2 13 14 15 16 17 18 19
|
tgbtwnconn3 |
|
21 |
|
eqid |
|
22 |
7
|
adantr |
|
23 |
6
|
adantr |
|
24 |
8
|
adantr |
|
25 |
5
|
adantr |
|
26 |
4
|
adantr |
|
27 |
9
|
adantr |
|
28 |
|
simpr |
|
29 |
1 21 2 22 23 24 25 26 27 28
|
tgbtwnexch |
|
30 |
29
|
olcd |
|
31 |
20 30
|
jaodan |
|
32 |
7
|
adantr |
|
33 |
6
|
adantr |
|
34 |
4
|
adantr |
|
35 |
8
|
adantr |
|
36 |
5
|
adantr |
|
37 |
|
simpr |
|
38 |
9
|
adantr |
|
39 |
1 21 2 32 33 34 35 36 37 38
|
tgbtwnexch |
|
40 |
39
|
orcd |
|
41 |
7
|
adantr |
|
42 |
6
|
adantr |
|
43 |
8
|
adantr |
|
44 |
4
|
adantr |
|
45 |
5
|
adantr |
|
46 |
11
|
necomd |
|
47 |
46
|
adantr |
|
48 |
|
simpr |
|
49 |
9
|
adantr |
|
50 |
1 2 41 42 43 44 45 47 48 49
|
tgbtwnconn1 |
|
51 |
40 50
|
jaodan |
|
52 |
31 51
|
impbida |
|
53 |
12 52
|
3anbi23d |
|
54 |
1 2 3 4 5 6 7
|
ishlg |
|
55 |
1 2 3 4 8 6 7
|
ishlg |
|
56 |
53 54 55
|
3bitr4d |
|