Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|
2 |
|
ishlg.i |
|
3 |
|
ishlg.k |
|
4 |
|
ishlg.a |
|
5 |
|
ishlg.b |
|
6 |
|
ishlg.c |
|
7 |
|
hlln.1 |
|
8 |
|
hltr.d |
|
9 |
|
hlcgrex.m |
|
10 |
|
hlcgrex.1 |
|
11 |
|
hlcgrex.2 |
|
12 |
|
hlcgreulem.x |
|
13 |
|
hlcgreulem.y |
|
14 |
|
hlcgreulem.1 |
|
15 |
|
hlcgreulem.2 |
|
16 |
|
hlcgreulem.3 |
|
17 |
|
hlcgreulem.4 |
|
18 |
7
|
ad2antrr |
|
19 |
4
|
ad2antrr |
|
20 |
5
|
ad2antrr |
|
21 |
6
|
ad2antrr |
|
22 |
|
simplr |
|
23 |
12
|
ad2antrr |
|
24 |
13
|
ad2antrr |
|
25 |
|
simprr |
|
26 |
25
|
necomd |
|
27 |
8
|
ad2antrr |
|
28 |
1 2 3 12 8 4 7 14
|
hlcomd |
|
29 |
28
|
ad2antrr |
|
30 |
|
simprl |
|
31 |
1 2 3 27 23 22 18 19 29 30
|
btwnhl |
|
32 |
1 9 2 18 23 19 22 31
|
tgbtwncom |
|
33 |
1 2 3 13 8 4 7 15
|
hlcomd |
|
34 |
33
|
ad2antrr |
|
35 |
1 2 3 27 24 22 18 19 34 30
|
btwnhl |
|
36 |
1 9 2 18 24 19 22 35
|
tgbtwncom |
|
37 |
16
|
ad2antrr |
|
38 |
17
|
ad2antrr |
|
39 |
1 9 2 18 19 20 21 22 23 24 26 32 36 37 38
|
tgsegconeq |
|
40 |
1
|
fvexi |
|
41 |
40
|
a1i |
|
42 |
41 5 6 11
|
nehash2 |
|
43 |
1 9 2 7 8 4 42
|
tgbtwndiff |
|
44 |
39 43
|
r19.29a |
|