Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|
2 |
|
ishlg.i |
|
3 |
|
ishlg.k |
|
4 |
|
ishlg.a |
|
5 |
|
ishlg.b |
|
6 |
|
ishlg.c |
|
7 |
|
hlln.1 |
|
8 |
|
hltr.d |
|
9 |
|
hlcgrex.m |
|
10 |
|
hlcgrex.1 |
|
11 |
|
hlcgrex.2 |
|
12 |
7
|
ad2antrr |
|
13 |
|
simplr |
|
14 |
4
|
ad2antrr |
|
15 |
5
|
ad2antrr |
|
16 |
6
|
ad2antrr |
|
17 |
1 9 2 12 13 14 15 16
|
axtgsegcon |
|
18 |
12
|
ad2antrr |
|
19 |
15
|
ad2antrr |
|
20 |
16
|
ad2antrr |
|
21 |
|
simplr |
|
22 |
14
|
ad2antrr |
|
23 |
|
simprr |
|
24 |
1 9 2 18 22 21 19 20 23
|
tgcgrcoml |
|
25 |
24
|
eqcomd |
|
26 |
11
|
ad4antr |
|
27 |
1 9 2 18 19 20 21 22 25 26
|
tgcgrneq |
|
28 |
10
|
ad4antr |
|
29 |
13
|
ad2antrr |
|
30 |
8
|
ad4antr |
|
31 |
|
simpllr |
|
32 |
31
|
simprd |
|
33 |
32
|
necomd |
|
34 |
|
simprl |
|
35 |
31
|
simpld |
|
36 |
1 9 2 18 30 22 29 35
|
tgbtwncom |
|
37 |
1 2 18 29 22 21 30 33 34 36
|
tgbtwnconn2 |
|
38 |
1 2 3 21 30 22 18
|
ishlg |
|
39 |
27 28 37 38
|
mpbir3and |
|
40 |
39 23
|
jca |
|
41 |
40
|
ex |
|
42 |
41
|
reximdva |
|
43 |
17 42
|
mpd |
|
44 |
1
|
fvexi |
|
45 |
44
|
a1i |
|
46 |
45 5 6 11
|
nehash2 |
|
47 |
1 9 2 7 8 4 46
|
tgbtwndiff |
|
48 |
43 47
|
r19.29a |
|