Metamath Proof Explorer


Theorem hlclat

Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlclat K HL K CLat

Proof

Step Hyp Ref Expression
1 hlomcmcv K HL K OML K CLat K CvLat
2 1 simp2d K HL K CLat