Metamath Proof Explorer


Theorem hlcmet

Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x X = BaseSet U
hlcmet.8 D = IndMet U
Assertion hlcmet U CHil OLD D CMet X

Proof

Step Hyp Ref Expression
1 hlcmet.x X = BaseSet U
2 hlcmet.8 D = IndMet U
3 hlobn U CHil OLD U CBan
4 1 2 cbncms U CBan D CMet X
5 3 4 syl U CHil OLD D CMet X