Metamath Proof Explorer


Theorem hlcomb

Description: The half-line relation commutes. Theorem 6.6 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
ishlg.g φ G V
Assertion hlcomb φ A K C B B K C A

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 ishlg.g φ G V
8 3ancoma A C B C A C I B B C I A B C A C A C I B B C I A
9 orcom A C I B B C I A B C I A A C I B
10 9 a1i φ A C I B B C I A B C I A A C I B
11 10 3anbi3d φ B C A C A C I B B C I A B C A C B C I A A C I B
12 8 11 syl5bb φ A C B C A C I B B C I A B C A C B C I A A C I B
13 1 2 3 4 5 6 7 ishlg φ A K C B A C B C A C I B B C I A
14 1 2 3 5 4 6 7 ishlg φ B K C A B C A C B C I A A C I B
15 12 13 14 3bitr4d φ A K C B B K C A