Metamath Proof Explorer


Theorem hldi

Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hldi.1 X = BaseSet U
hldi.2 G = + v U
hldi.4 S = 𝑠OLD U
Assertion hldi U CHil OLD A B X C X A S B G C = A S B G A S C

Proof

Step Hyp Ref Expression
1 hldi.1 X = BaseSet U
2 hldi.2 G = + v U
3 hldi.4 S = 𝑠OLD U
4 hlnv U CHil OLD U NrmCVec
5 1 2 3 nvdi U NrmCVec A B X C X A S B G C = A S B G A S C
6 4 5 sylan U CHil OLD A B X C X A S B G C = A S B G A S C