Metamath Proof Explorer


Theorem hldir

Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hldi.1 X = BaseSet U
hldi.2 G = + v U
hldi.4 S = 𝑠OLD U
Assertion hldir U CHil OLD A B C X A + B S C = A S C G B S C

Proof

Step Hyp Ref Expression
1 hldi.1 X = BaseSet U
2 hldi.2 G = + v U
3 hldi.4 S = 𝑠OLD U
4 hlnv U CHil OLD U NrmCVec
5 1 2 3 nvdir U NrmCVec A B C X A + B S C = A S C G B S C
6 4 5 sylan U CHil OLD A B C X A + B S C = A S C G B S C