Metamath Proof Explorer


Theorem hleqnid

Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
Assertion hleqnid φ ¬ A K A B

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 neirr ¬ A A
9 8 a1i φ ¬ A A
10 4 adantr φ A K A B A P
11 5 adantr φ A K A B B P
12 7 adantr φ A K A B G 𝒢 Tarski
13 simpr φ A K A B A K A B
14 1 2 3 10 11 10 12 13 hlne1 φ A K A B A A
15 9 14 mtand φ ¬ A K A B