Metamath Proof Explorer


Theorem hlhilplus

Description: The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h H = LHyp K
hlhilbase.u U = HLHil K W
hlhilbase.k φ K HL W H
hlhilbase.l L = DVecH K W
hlhilplus.a + ˙ = + L
Assertion hlhilplus φ + ˙ = + U

Proof

Step Hyp Ref Expression
1 hlhilbase.h H = LHyp K
2 hlhilbase.u U = HLHil K W
3 hlhilbase.k φ K HL W H
4 hlhilbase.l L = DVecH K W
5 hlhilplus.a + ˙ = + L
6 eqid Base L = Base L
7 eqid EDRing K W = EDRing K W
8 eqid HGMap K W = HGMap K W
9 eqid EDRing K W sSet * ndx HGMap K W = EDRing K W sSet * ndx HGMap K W
10 eqid L = L
11 eqid HDMap K W = HDMap K W
12 eqid x Base L , y Base L HDMap K W y x = x Base L , y Base L HDMap K W y x
13 1 2 4 6 5 7 8 9 10 11 12 3 hlhilset φ U = Base ndx Base L + ndx + ˙ Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x Base L , y Base L HDMap K W y x
14 13 fveq2d φ + U = + Base ndx Base L + ndx + ˙ Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x Base L , y Base L HDMap K W y x
15 5 fvexi + ˙ V
16 eqid Base ndx Base L + ndx + ˙ Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x Base L , y Base L HDMap K W y x = Base ndx Base L + ndx + ˙ Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x Base L , y Base L HDMap K W y x
17 16 phlplusg + ˙ V + ˙ = + Base ndx Base L + ndx + ˙ Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x Base L , y Base L HDMap K W y x
18 15 17 ax-mp + ˙ = + Base ndx Base L + ndx + ˙ Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x Base L , y Base L HDMap K W y x
19 14 18 syl6reqr φ + ˙ = + U