Metamath Proof Explorer


Theorem hlid

Description: The half-line relation is reflexive. Theorem 6.5 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hlid.1 φ A C
Assertion hlid φ A K C A

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hlid.1 φ A C
9 eqid dist G = dist G
10 1 9 2 7 6 4 tgbtwntriv2 φ A C I A
11 10 olcd φ A C I A A C I A
12 1 2 3 4 4 6 7 ishlg φ A K C A A C A C A C I A A C I A
13 8 8 11 12 mpbir3and φ A K C A