Metamath Proof Explorer


Theorem hlim0

Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlim0 × 0 v 0

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 1 fconst6 × 0 :
3 ax-hilex V
4 nnex V
5 3 4 elmap × 0 × 0 :
6 2 5 mpbir × 0
7 eqid + norm = + norm
8 eqid IndMet + norm = IndMet + norm
9 7 8 hhxmet IndMet + norm ∞Met
10 eqid MetOpen IndMet + norm = MetOpen IndMet + norm
11 10 mopntopon IndMet + norm ∞Met MetOpen IndMet + norm TopOn
12 9 11 ax-mp MetOpen IndMet + norm TopOn
13 1z 1
14 nnuz = 1
15 14 lmconst MetOpen IndMet + norm TopOn 0 1 × 0 t MetOpen IndMet + norm 0
16 12 1 13 15 mp3an × 0 t MetOpen IndMet + norm 0
17 7 8 10 hhlm v = t MetOpen IndMet + norm
18 17 breqi × 0 v 0 × 0 t MetOpen IndMet + norm 0
19 1 elexi 0 V
20 19 brresi × 0 t MetOpen IndMet + norm 0 × 0 × 0 t MetOpen IndMet + norm 0
21 18 20 bitri × 0 v 0 × 0 × 0 t MetOpen IndMet + norm 0
22 6 16 21 mpbir2an × 0 v 0