Metamath Proof Explorer


Theorem hlimadd

Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hlimadd.3 φ F :
hlimadd.4 φ G :
hlimadd.5 φ F v A
hlimadd.6 φ G v B
hlimadd.7 H = n F n + G n
Assertion hlimadd φ H v A + B

Proof

Step Hyp Ref Expression
1 hlimadd.3 φ F :
2 hlimadd.4 φ G :
3 hlimadd.5 φ F v A
4 hlimadd.6 φ G v B
5 hlimadd.7 H = n F n + G n
6 1 ffvelrnda φ n F n
7 2 ffvelrnda φ n G n
8 hvaddcl F n G n F n + G n
9 6 7 8 syl2anc φ n F n + G n
10 9 5 fmptd φ H :
11 ax-hilex V
12 nnex V
13 11 12 elmap H H :
14 10 13 sylibr φ H
15 nnuz = 1
16 1zzd φ 1
17 eqid + norm = + norm
18 eqid norm - = norm -
19 17 18 hhims norm - = IndMet + norm
20 17 19 hhxmet norm - ∞Met
21 eqid MetOpen norm - = MetOpen norm -
22 21 mopntopon norm - ∞Met MetOpen norm - TopOn
23 20 22 mp1i φ MetOpen norm - TopOn
24 17 hhnv + norm NrmCVec
25 df-hba = BaseSet + norm
26 17 24 25 19 21 h2hlm v = t MetOpen norm -
27 resss t MetOpen norm - t MetOpen norm -
28 26 27 eqsstri v t MetOpen norm -
29 28 ssbri F v A F t MetOpen norm - A
30 3 29 syl φ F t MetOpen norm - A
31 28 ssbri G v B G t MetOpen norm - B
32 4 31 syl φ G t MetOpen norm - B
33 17 hhva + = + v + norm
34 19 21 33 vacn + norm NrmCVec + MetOpen norm - × t MetOpen norm - Cn MetOpen norm -
35 24 34 mp1i φ + MetOpen norm - × t MetOpen norm - Cn MetOpen norm -
36 15 16 23 23 1 2 30 32 35 5 lmcn2 φ H t MetOpen norm - A + B
37 26 breqi H v A + B H t MetOpen norm - A + B
38 ovex A + B V
39 38 brresi H t MetOpen norm - A + B H H t MetOpen norm - A + B
40 37 39 bitri H v A + B H H t MetOpen norm - A + B
41 14 36 40 sylanbrc φ H v A + B