Metamath Proof Explorer


Theorem hlimcaui

Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlimcaui F v A F Cauchy

Proof

Step Hyp Ref Expression
1 eqid + norm = + norm
2 eqid IndMet + norm = IndMet + norm
3 eqid MetOpen IndMet + norm = MetOpen IndMet + norm
4 1 2 3 hhlm v = t MetOpen IndMet + norm
5 resss t MetOpen IndMet + norm t MetOpen IndMet + norm
6 4 5 eqsstri v t MetOpen IndMet + norm
7 dmss v t MetOpen IndMet + norm dom v dom t MetOpen IndMet + norm
8 6 7 ax-mp dom v dom t MetOpen IndMet + norm
9 1 2 hhxmet IndMet + norm ∞Met
10 3 lmcau IndMet + norm ∞Met dom t MetOpen IndMet + norm Cau IndMet + norm
11 9 10 ax-mp dom t MetOpen IndMet + norm Cau IndMet + norm
12 8 11 sstri dom v Cau IndMet + norm
13 4 dmeqi dom v = dom t MetOpen IndMet + norm
14 dmres dom t MetOpen IndMet + norm = dom t MetOpen IndMet + norm
15 13 14 eqtri dom v = dom t MetOpen IndMet + norm
16 inss1 dom t MetOpen IndMet + norm
17 15 16 eqsstri dom v
18 12 17 ssini dom v Cau IndMet + norm
19 1 2 hhcau Cauchy = Cau IndMet + norm
20 18 19 sseqtrri dom v Cauchy
21 relres Rel t MetOpen IndMet + norm
22 4 releqi Rel v Rel t MetOpen IndMet + norm
23 21 22 mpbir Rel v
24 23 releldmi F v A F dom v
25 20 24 sselid F v A F Cauchy