Metamath Proof Explorer


Theorem hlimconvi

Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1 A V
Assertion hlimconvi F v A B + y z y norm F z - A < B

Proof

Step Hyp Ref Expression
1 hlim.1 A V
2 1 hlimi F v A F : A x + y z y norm F z - A < x
3 2 simprbi F v A x + y z y norm F z - A < x
4 breq2 x = B norm F z - A < x norm F z - A < B
5 4 rexralbidv x = B y z y norm F z - A < x y z y norm F z - A < B
6 5 rspccva x + y z y norm F z - A < x B + y z y norm F z - A < B
7 3 6 sylan F v A B + y z y norm F z - A < B