Metamath Proof Explorer


Theorem hlimf

Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlimf v : dom v

Proof

Step Hyp Ref Expression
1 eqid + norm = + norm
2 eqid IndMet + norm = IndMet + norm
3 1 2 hhxmet IndMet + norm ∞Met
4 eqid MetOpen IndMet + norm = MetOpen IndMet + norm
5 4 methaus IndMet + norm ∞Met MetOpen IndMet + norm Haus
6 lmfun MetOpen IndMet + norm Haus Fun t MetOpen IndMet + norm
7 3 5 6 mp2b Fun t MetOpen IndMet + norm
8 funres Fun t MetOpen IndMet + norm Fun t MetOpen IndMet + norm
9 7 8 ax-mp Fun t MetOpen IndMet + norm
10 1 2 4 hhlm v = t MetOpen IndMet + norm
11 10 funeqi Fun v Fun t MetOpen IndMet + norm
12 9 11 mpbir Fun v
13 funfn Fun v v Fn dom v
14 12 13 mpbi v Fn dom v
15 funfvbrb Fun v x dom v x v v x
16 12 15 ax-mp x dom v x v v x
17 fvex v x V
18 17 hlimveci x v v x v x
19 16 18 sylbi x dom v v x
20 19 rgen x dom v v x
21 ffnfv v : dom v v Fn dom v x dom v v x
22 14 20 21 mpbir2an v : dom v