Metamath Proof Explorer


Theorem hlimi

Description: Express the predicate: The limit of vector sequence F in a Hilbert space is A , i.e. F converges to A . This means that for any real x , no matter how small, there always exists an integer y such that the norm of any later vector in the sequence minus the limit is less than x . Definition of converge in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1 A V
Assertion hlimi F v A F : A x + y z y norm F z - A < x

Proof

Step Hyp Ref Expression
1 hlim.1 A V
2 df-hlim v = f w | f : w x + y z y norm f z - w < x
3 2 relopabiv Rel v
4 3 brrelex1i F v A F V
5 nnex V
6 fex F : V F V
7 5 6 mpan2 F : F V
8 7 ad2antrr F : A x + y z y norm F z - A < x F V
9 feq1 f = F f : F :
10 eleq1 w = A w A
11 9 10 bi2anan9 f = F w = A f : w F : A
12 fveq1 f = F f z = F z
13 oveq12 f z = F z w = A f z - w = F z - A
14 12 13 sylan f = F w = A f z - w = F z - A
15 14 fveq2d f = F w = A norm f z - w = norm F z - A
16 15 breq1d f = F w = A norm f z - w < x norm F z - A < x
17 16 rexralbidv f = F w = A y z y norm f z - w < x y z y norm F z - A < x
18 17 ralbidv f = F w = A x + y z y norm f z - w < x x + y z y norm F z - A < x
19 11 18 anbi12d f = F w = A f : w x + y z y norm f z - w < x F : A x + y z y norm F z - A < x
20 19 2 brabga F V A V F v A F : A x + y z y norm F z - A < x
21 1 20 mpan2 F V F v A F : A x + y z y norm F z - A < x
22 4 8 21 pm5.21nii F v A F : A x + y z y norm F z - A < x