Metamath Proof Explorer


Theorem hlimuni

Description: A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999) (Revised by Mario Carneiro, 2-May-2015) (New usage is discouraged.)

Ref Expression
Assertion hlimuni F v A F v B A = B

Proof

Step Hyp Ref Expression
1 hlimf v : dom v
2 ffun v : dom v Fun v
3 funbrfv Fun v F v A v F = A
4 1 2 3 mp2b F v A v F = A
5 funbrfv Fun v F v B v F = B
6 1 2 5 mp2b F v B v F = B
7 4 6 sylan9req F v A F v B A = B