Metamath Proof Explorer


Theorem hlipass

Description: Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipass.1 X = BaseSet U
hlipass.4 S = 𝑠OLD U
hlipass.7 P = 𝑖OLD U
Assertion hlipass U CHil OLD A B X C X A S B P C = A B P C

Proof

Step Hyp Ref Expression
1 hlipass.1 X = BaseSet U
2 hlipass.4 S = 𝑠OLD U
3 hlipass.7 P = 𝑖OLD U
4 hlph U CHil OLD U CPreHil OLD
5 1 2 3 dipass U CPreHil OLD A B X C X A S B P C = A B P C
6 4 5 sylan U CHil OLD A B X C X A S B P C = A B P C