Metamath Proof Explorer


Theorem hlipcj

Description: Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1 X = BaseSet U
hlipf.7 P = 𝑖OLD U
Assertion hlipcj U CHil OLD A X B X A P B = B P A

Proof

Step Hyp Ref Expression
1 hlipf.1 X = BaseSet U
2 hlipf.7 P = 𝑖OLD U
3 hlnv U CHil OLD U NrmCVec
4 1 2 dipcj U NrmCVec B X A X B P A = A P B
5 3 4 syl3an1 U CHil OLD B X A X B P A = A P B
6 5 3com23 U CHil OLD A X B X B P A = A P B
7 6 eqcomd U CHil OLD A X B X A P B = B P A