Metamath Proof Explorer


Theorem hlipdir

Description: Distributive law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipdir.1 X = BaseSet U
hlipdir.2 G = + v U
hlipdir.7 P = 𝑖OLD U
Assertion hlipdir U CHil OLD A X B X C X A G B P C = A P C + B P C

Proof

Step Hyp Ref Expression
1 hlipdir.1 X = BaseSet U
2 hlipdir.2 G = + v U
3 hlipdir.7 P = 𝑖OLD U
4 hlph U CHil OLD U CPreHil OLD
5 1 2 3 dipdir U CPreHil OLD A X B X C X A G B P C = A P C + B P C
6 4 5 sylan U CHil OLD A X B X C X A G B P C = A P C + B P C