Metamath Proof Explorer


Theorem hlipf

Description: Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1 X = BaseSet U
hlipf.7 P = 𝑖OLD U
Assertion hlipf U CHil OLD P : X × X

Proof

Step Hyp Ref Expression
1 hlipf.1 X = BaseSet U
2 hlipf.7 P = 𝑖OLD U
3 hlnv U CHil OLD U NrmCVec
4 1 2 ipf U NrmCVec P : X × X
5 3 4 syl U CHil OLD P : X × X