Metamath Proof Explorer


Theorem hlln

Description: The half-line relation implies colinearity, part of Theorem 6.4 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hlln.l L = Line 𝒢 G
hlln.2 φ A K C B
Assertion hlln φ A B L C

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hlln.l L = Line 𝒢 G
9 hlln.2 φ A K C B
10 eqid dist G = dist G
11 7 adantr φ A C I B G 𝒢 Tarski
12 6 adantr φ A C I B C P
13 4 adantr φ A C I B A P
14 5 adantr φ A C I B B P
15 simpr φ A C I B A C I B
16 1 10 2 11 12 13 14 15 tgbtwncom φ A C I B A B I C
17 16 3mix1d φ A C I B A B I C B A I C C B I A
18 7 adantr φ B C I A G 𝒢 Tarski
19 6 adantr φ B C I A C P
20 5 adantr φ B C I A B P
21 4 adantr φ B C I A A P
22 simpr φ B C I A B C I A
23 1 10 2 18 19 20 21 22 tgbtwncom φ B C I A B A I C
24 23 3mix2d φ B C I A A B I C B A I C C B I A
25 1 2 3 4 5 6 7 ishlg φ A K C B A C B C A C I B B C I A
26 9 25 mpbid φ A C B C A C I B B C I A
27 26 simp3d φ A C I B B C I A
28 17 24 27 mpjaodan φ A B I C B A I C C B I A
29 26 simp2d φ B C
30 1 8 2 7 5 6 29 4 tgellng φ A B L C A B I C B A I C C B I A
31 28 30 mpbird φ A B L C