Metamath Proof Explorer


Theorem hlmet

Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x X = BaseSet U
hlcmet.8 D = IndMet U
Assertion hlmet U CHil OLD D Met X

Proof

Step Hyp Ref Expression
1 hlcmet.x X = BaseSet U
2 hlcmet.8 D = IndMet U
3 1 2 hlcmet U CHil OLD D CMet X
4 cmetmet D CMet X D Met X
5 3 4 syl U CHil OLD D Met X