Step |
Hyp |
Ref |
Expression |
1 |
|
hlmod.b |
|
2 |
|
hlmod.l |
|
3 |
|
hlmod.j |
|
4 |
|
hlmod.m |
|
5 |
|
hlmod.f |
|
6 |
|
hlmod.p |
|
7 |
|
hllat |
|
8 |
7
|
3ad2ant1 |
|
9 |
|
simp21 |
|
10 |
|
simp22 |
|
11 |
1 3
|
latjcl |
|
12 |
8 9 10 11
|
syl3anc |
|
13 |
|
simp23 |
|
14 |
1 4
|
latmcl |
|
15 |
8 12 13 14
|
syl3anc |
|
16 |
1 4
|
latmcl |
|
17 |
8 10 13 16
|
syl3anc |
|
18 |
1 3
|
latjcl |
|
19 |
8 9 17 18
|
syl3anc |
|
20 |
|
simp1 |
|
21 |
|
eqid |
|
22 |
1 21 5
|
pmapssat |
|
23 |
20 9 22
|
syl2anc |
|
24 |
1 21 5
|
pmapssat |
|
25 |
20 10 24
|
syl2anc |
|
26 |
|
eqid |
|
27 |
1 26 5
|
pmapsub |
|
28 |
8 13 27
|
syl2anc |
|
29 |
|
simp3l |
|
30 |
1 2 5
|
pmaple |
|
31 |
20 9 13 30
|
syl3anc |
|
32 |
29 31
|
mpbid |
|
33 |
21 26 6
|
pmod1i |
|
34 |
33
|
3impia |
|
35 |
20 23 25 28 32 34
|
syl131anc |
|
36 |
1 4 21 5
|
pmapmeet |
|
37 |
20 12 13 36
|
syl3anc |
|
38 |
|
simp3r |
|
39 |
38
|
ineq1d |
|
40 |
37 39
|
eqtrd |
|
41 |
1 4 21 5
|
pmapmeet |
|
42 |
20 10 13 41
|
syl3anc |
|
43 |
42
|
oveq2d |
|
44 |
35 40 43
|
3eqtr4d |
|
45 |
1 3 5 6
|
pmapjoin |
|
46 |
8 9 17 45
|
syl3anc |
|
47 |
44 46
|
eqsstrd |
|
48 |
1 2 5
|
pmaple |
|
49 |
20 15 19 48
|
syl3anc |
|
50 |
47 49
|
mpbird |
|
51 |
1 2 3 4
|
mod1ile |
|
52 |
51
|
3impia |
|
53 |
8 9 10 13 29 52
|
syl131anc |
|
54 |
1 2 8 15 19 50 53
|
latasymd |
|
55 |
54
|
3expia |
|