| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlmod.b |
|
| 2 |
|
hlmod.l |
|
| 3 |
|
hlmod.j |
|
| 4 |
|
hlmod.m |
|
| 5 |
|
hlmod.f |
|
| 6 |
|
hlmod.p |
|
| 7 |
|
hllat |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
|
simp21 |
|
| 10 |
|
simp22 |
|
| 11 |
1 3
|
latjcl |
|
| 12 |
8 9 10 11
|
syl3anc |
|
| 13 |
|
simp23 |
|
| 14 |
1 4
|
latmcl |
|
| 15 |
8 12 13 14
|
syl3anc |
|
| 16 |
1 4
|
latmcl |
|
| 17 |
8 10 13 16
|
syl3anc |
|
| 18 |
1 3
|
latjcl |
|
| 19 |
8 9 17 18
|
syl3anc |
|
| 20 |
|
simp1 |
|
| 21 |
|
eqid |
|
| 22 |
1 21 5
|
pmapssat |
|
| 23 |
20 9 22
|
syl2anc |
|
| 24 |
1 21 5
|
pmapssat |
|
| 25 |
20 10 24
|
syl2anc |
|
| 26 |
|
eqid |
|
| 27 |
1 26 5
|
pmapsub |
|
| 28 |
8 13 27
|
syl2anc |
|
| 29 |
|
simp3l |
|
| 30 |
1 2 5
|
pmaple |
|
| 31 |
20 9 13 30
|
syl3anc |
|
| 32 |
29 31
|
mpbid |
|
| 33 |
21 26 6
|
pmod1i |
|
| 34 |
33
|
3impia |
|
| 35 |
20 23 25 28 32 34
|
syl131anc |
|
| 36 |
1 4 21 5
|
pmapmeet |
|
| 37 |
20 12 13 36
|
syl3anc |
|
| 38 |
|
simp3r |
|
| 39 |
38
|
ineq1d |
|
| 40 |
37 39
|
eqtrd |
|
| 41 |
1 4 21 5
|
pmapmeet |
|
| 42 |
20 10 13 41
|
syl3anc |
|
| 43 |
42
|
oveq2d |
|
| 44 |
35 40 43
|
3eqtr4d |
|
| 45 |
1 3 5 6
|
pmapjoin |
|
| 46 |
8 9 17 45
|
syl3anc |
|
| 47 |
44 46
|
eqsstrd |
|
| 48 |
1 2 5
|
pmaple |
|
| 49 |
20 15 19 48
|
syl3anc |
|
| 50 |
47 49
|
mpbird |
|
| 51 |
1 2 3 4
|
mod1ile |
|
| 52 |
51
|
3impia |
|
| 53 |
8 9 10 13 29 52
|
syl131anc |
|
| 54 |
1 2 8 15 19 50 53
|
latasymd |
|
| 55 |
54
|
3expia |
|