Metamath Proof Explorer


Theorem hlmul0

Description: Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmul0.1 X = BaseSet U
hlmul0.4 S = 𝑠OLD U
hlmul0.5 Z = 0 vec U
Assertion hlmul0 U CHil OLD A X 0 S A = Z

Proof

Step Hyp Ref Expression
1 hlmul0.1 X = BaseSet U
2 hlmul0.4 S = 𝑠OLD U
3 hlmul0.5 Z = 0 vec U
4 hlnv U CHil OLD U NrmCVec
5 1 2 3 nv0 U NrmCVec A X 0 S A = Z
6 4 5 sylan U CHil OLD A X 0 S A = Z