Metamath Proof Explorer


Theorem hlmulass

Description: Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 X = BaseSet U
hlmulf.4 S = 𝑠OLD U
Assertion hlmulass U CHil OLD A B C X A B S C = A S B S C

Proof

Step Hyp Ref Expression
1 hlmulf.1 X = BaseSet U
2 hlmulf.4 S = 𝑠OLD U
3 hlnv U CHil OLD U NrmCVec
4 1 2 nvsass U NrmCVec A B C X A B S C = A S B S C
5 3 4 sylan U CHil OLD A B C X A B S C = A S B S C