Metamath Proof Explorer


Theorem hlmulid

Description: Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 X = BaseSet U
hlmulf.4 S = 𝑠OLD U
Assertion hlmulid U CHil OLD A X 1 S A = A

Proof

Step Hyp Ref Expression
1 hlmulf.1 X = BaseSet U
2 hlmulf.4 S = 𝑠OLD U
3 hlnv U CHil OLD U NrmCVec
4 1 2 nvsid U NrmCVec A X 1 S A = A
5 3 4 sylan U CHil OLD A X 1 S A = A