Metamath Proof Explorer


Theorem hlne2

Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
ishlg.g φ G V
hlcomd.1 φ A K C B
Assertion hlne2 φ B C

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 ishlg.g φ G V
8 hlcomd.1 φ A K C B
9 1 2 3 4 5 6 7 ishlg φ A K C B A C B C A C I B B C I A
10 8 9 mpbid φ A C B C A C I B B C I A
11 10 simp2d φ B C