Metamath Proof Explorer


Theorem hlomcmcv

Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion hlomcmcv K HL K OML K CLat K CvLat

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid K = K
3 eqid < K = < K
4 eqid join K = join K
5 eqid 0. K = 0. K
6 eqid 1. K = 1. K
7 eqid Atoms K = Atoms K
8 1 2 3 4 5 6 7 ishlat1 K HL K OML K CLat K CvLat x Atoms K y Atoms K x y z Atoms K z x z y z K x join K y x Base K y Base K z Base K 0. K < K x x < K y y < K z z < K 1. K
9 8 simplbi K HL K OML K CLat K CvLat