Metamath Proof Explorer


Theorem hlpar

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar.1 X = BaseSet U
hlpar.2 G = + v U
hlpar.4 S = 𝑠OLD U
hlpar.6 N = norm CV U
Assertion hlpar U CHil OLD A X B X N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 hlpar.1 X = BaseSet U
2 hlpar.2 G = + v U
3 hlpar.4 S = 𝑠OLD U
4 hlpar.6 N = norm CV U
5 hlph U CHil OLD U CPreHil OLD
6 1 2 3 4 phpar U CPreHil OLD A X B X N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2
7 5 6 syl3an1 U CHil OLD A X B X N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2