Metamath Proof Explorer


Theorem hlpar2

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar2.1 X = BaseSet U
hlpar2.2 G = + v U
hlpar2.3 M = - v U
hlpar2.6 N = norm CV U
Assertion hlpar2 U CHil OLD A X B X N A G B 2 + N A M B 2 = 2 N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 hlpar2.1 X = BaseSet U
2 hlpar2.2 G = + v U
3 hlpar2.3 M = - v U
4 hlpar2.6 N = norm CV U
5 hlph U CHil OLD U CPreHil OLD
6 1 2 3 4 phpar2 U CPreHil OLD A X B X N A G B 2 + N A M B 2 = 2 N A 2 + N B 2
7 5 6 syl3an1 U CHil OLD A X B X N A G B 2 + N A M B 2 = 2 N A 2 + N B 2