Metamath Proof Explorer


Theorem hlperpnel

Description: A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
hlperpnel.a φ A ran L
hlperpnel.k K = hl 𝒢 G
hlperpnel.1 φ U A
hlperpnel.2 φ V P
hlperpnel.3 φ W P
hlperpnel.4 φ A 𝒢 G U L V
hlperpnel.5 φ V K U W
Assertion hlperpnel φ ¬ W A

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 hlperpnel.a φ A ran L
7 hlperpnel.k K = hl 𝒢 G
8 hlperpnel.1 φ U A
9 hlperpnel.2 φ V P
10 hlperpnel.3 φ W P
11 hlperpnel.4 φ A 𝒢 G U L V
12 hlperpnel.5 φ V K U W
13 1 4 3 5 6 8 tglnpt φ U P
14 4 5 11 perpln2 φ U L V ran L
15 1 3 4 5 13 9 14 tglnne φ U V
16 1 3 7 9 10 13 5 12 hlne2 φ W U
17 1 3 7 9 10 13 5 4 12 hlln φ V W L U
18 1 3 4 5 13 9 10 15 17 16 lnrot1 φ W U L V
19 1 3 4 5 13 9 15 10 16 18 tglineelsb2 φ U L V = U L W
20 1 2 3 4 5 6 14 11 perpcom φ U L V 𝒢 G A
21 19 20 eqbrtrrd φ U L W 𝒢 G A
22 1 2 3 4 5 6 8 10 21 footne φ ¬ W A