Metamath Proof Explorer


Theorem hlprlem

Description: Lemma for hlpr . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f F = Scalar W
hlress.k K = Base F
Assertion hlprlem W ℂHil K SubRing fld fld 𝑠 K DivRing fld 𝑠 K CMetSp

Proof

Step Hyp Ref Expression
1 hlress.f F = Scalar W
2 hlress.k K = Base F
3 hlcph W ℂHil W CPreHil
4 1 2 cphsubrg W CPreHil K SubRing fld
5 3 4 syl W ℂHil K SubRing fld
6 1 2 cphsca W CPreHil F = fld 𝑠 K
7 3 6 syl W ℂHil F = fld 𝑠 K
8 cphlvec W CPreHil W LVec
9 1 lvecdrng W LVec F DivRing
10 3 8 9 3syl W ℂHil F DivRing
11 7 10 eqeltrrd W ℂHil fld 𝑠 K DivRing
12 hlbn W ℂHil W Ban
13 1 bnsca W Ban F CMetSp
14 12 13 syl W ℂHil F CMetSp
15 7 14 eqeltrrd W ℂHil fld 𝑠 K CMetSp
16 5 11 15 3jca W ℂHil K SubRing fld fld 𝑠 K DivRing fld 𝑠 K CMetSp