Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Banach spaces and subcomplex Hilbert spaces
hlprlem
Next ⟩
hlress
Metamath Proof Explorer
Ascii
Unicode
Theorem
hlprlem
Description:
Lemma for
hlpr
.
(Contributed by
Mario Carneiro
, 15-Oct-2015)
Ref
Expression
Hypotheses
hlress.f
⊢
F
=
Scalar
⁡
W
hlress.k
⊢
K
=
Base
F
Assertion
hlprlem
⊢
W
∈
ℂHil
→
K
∈
SubRing
⁡
ℂ
fld
∧
ℂ
fld
↾
𝑠
K
∈
DivRing
∧
ℂ
fld
↾
𝑠
K
∈
CMetSp
Proof
Step
Hyp
Ref
Expression
1
hlress.f
⊢
F
=
Scalar
⁡
W
2
hlress.k
⊢
K
=
Base
F
3
hlcph
⊢
W
∈
ℂHil
→
W
∈
CPreHil
4
1
2
cphsubrg
⊢
W
∈
CPreHil
→
K
∈
SubRing
⁡
ℂ
fld
5
3
4
syl
⊢
W
∈
ℂHil
→
K
∈
SubRing
⁡
ℂ
fld
6
1
2
cphsca
⊢
W
∈
CPreHil
→
F
=
ℂ
fld
↾
𝑠
K
7
3
6
syl
⊢
W
∈
ℂHil
→
F
=
ℂ
fld
↾
𝑠
K
8
cphlvec
⊢
W
∈
CPreHil
→
W
∈
LVec
9
1
lvecdrng
⊢
W
∈
LVec
→
F
∈
DivRing
10
3
8
9
3syl
⊢
W
∈
ℂHil
→
F
∈
DivRing
11
7
10
eqeltrrd
⊢
W
∈
ℂHil
→
ℂ
fld
↾
𝑠
K
∈
DivRing
12
hlbn
⊢
W
∈
ℂHil
→
W
∈
Ban
13
1
bnsca
⊢
W
∈
Ban
→
F
∈
CMetSp
14
12
13
syl
⊢
W
∈
ℂHil
→
F
∈
CMetSp
15
7
14
eqeltrrd
⊢
W
∈
ℂHil
→
ℂ
fld
↾
𝑠
K
∈
CMetSp
16
5
11
15
3jca
⊢
W
∈
ℂHil
→
K
∈
SubRing
⁡
ℂ
fld
∧
ℂ
fld
↾
𝑠
K
∈
DivRing
∧
ℂ
fld
↾
𝑠
K
∈
CMetSp