Metamath Proof Explorer


Theorem hlrelat1

Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.) (Contributed by NM, 4-Dec-2011)

Ref Expression
Hypotheses hlrelat1.b B = Base K
hlrelat1.l ˙ = K
hlrelat1.s < ˙ = < K
hlrelat1.a A = Atoms K
Assertion hlrelat1 K HL X B Y B X < ˙ Y p A ¬ p ˙ X p ˙ Y

Proof

Step Hyp Ref Expression
1 hlrelat1.b B = Base K
2 hlrelat1.l ˙ = K
3 hlrelat1.s < ˙ = < K
4 hlrelat1.a A = Atoms K
5 hlomcmat K HL K OML K CLat K AtLat
6 1 2 3 4 atlrelat1 K OML K CLat K AtLat X B Y B X < ˙ Y p A ¬ p ˙ X p ˙ Y
7 5 6 syl3an1 K HL X B Y B X < ˙ Y p A ¬ p ˙ X p ˙ Y