Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
hlrelat1
Metamath Proof Explorer
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of
MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.)
(Contributed by NM , 4-Dec-2011)
Ref
Expression
Hypotheses
hlrelat1.b
⊢ B = Base K
hlrelat1.l
⊢ ≤ ˙ = ≤ K
hlrelat1.s
⊢ < ˙ = < K
hlrelat1.a
⊢ A = Atoms ⁡ K
Assertion
hlrelat1
⊢ K ∈ HL ∧ X ∈ B ∧ Y ∈ B → X < ˙ Y → ∃ p ∈ A ¬ p ≤ ˙ X ∧ p ≤ ˙ Y
Proof
Step
Hyp
Ref
Expression
1
hlrelat1.b
⊢ B = Base K
2
hlrelat1.l
⊢ ≤ ˙ = ≤ K
3
hlrelat1.s
⊢ < ˙ = < K
4
hlrelat1.a
⊢ A = Atoms ⁡ K
5
hlomcmat
⊢ K ∈ HL → K ∈ OML ∧ K ∈ CLat ∧ K ∈ AtLat
6
1 2 3 4
atlrelat1
⊢ K ∈ OML ∧ K ∈ CLat ∧ K ∈ AtLat ∧ X ∈ B ∧ Y ∈ B → X < ˙ Y → ∃ p ∈ A ¬ p ≤ ˙ X ∧ p ≤ ˙ Y
7
5 6
syl3an1
⊢ K ∈ HL ∧ X ∈ B ∧ Y ∈ B → X < ˙ Y → ∃ p ∈ A ¬ p ≤ ˙ X ∧ p ≤ ˙ Y