Step |
Hyp |
Ref |
Expression |
1 |
|
hlrelat2.b |
|
2 |
|
hlrelat2.l |
|
3 |
|
hlrelat2.a |
|
4 |
|
hllat |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 2 5 6
|
latnlemlt |
|
8 |
4 7
|
syl3an1 |
|
9 |
|
simp1 |
|
10 |
1 6
|
latmcl |
|
11 |
4 10
|
syl3an1 |
|
12 |
|
simp2 |
|
13 |
|
eqid |
|
14 |
1 2 5 13 3
|
hlrelat |
|
15 |
14
|
ex |
|
16 |
9 11 12 15
|
syl3anc |
|
17 |
|
simpl1 |
|
18 |
17
|
hllatd |
|
19 |
11
|
adantr |
|
20 |
1 3
|
atbase |
|
21 |
20
|
adantl |
|
22 |
|
simpl2 |
|
23 |
1 2 13
|
latjle12 |
|
24 |
18 19 21 22 23
|
syl13anc |
|
25 |
|
simpr |
|
26 |
24 25
|
syl6bir |
|
27 |
26
|
adantld |
|
28 |
|
simpl3 |
|
29 |
1 2 6
|
latlem12 |
|
30 |
18 21 22 28 29
|
syl13anc |
|
31 |
30
|
notbid |
|
32 |
1 2 5 13
|
latnle |
|
33 |
18 19 21 32
|
syl3anc |
|
34 |
31 33
|
bitrd |
|
35 |
34 24
|
anbi12d |
|
36 |
|
pm3.21 |
|
37 |
|
orcom |
|
38 |
|
pm4.55 |
|
39 |
|
imor |
|
40 |
37 38 39
|
3bitr4ri |
|
41 |
36 40
|
sylib |
|
42 |
41
|
con2i |
|
43 |
42
|
adantrl |
|
44 |
35 43
|
syl6bir |
|
45 |
27 44
|
jcad |
|
46 |
45
|
reximdva |
|
47 |
16 46
|
syld |
|
48 |
8 47
|
sylbid |
|
49 |
1 2
|
lattr |
|
50 |
18 21 22 28 49
|
syl13anc |
|
51 |
50
|
exp4b |
|
52 |
51
|
com34 |
|
53 |
52
|
com23 |
|
54 |
53
|
ralrimdv |
|
55 |
|
iman |
|
56 |
55
|
ralbii |
|
57 |
|
ralnex |
|
58 |
56 57
|
bitri |
|
59 |
54 58
|
syl6ib |
|
60 |
59
|
con2d |
|
61 |
48 60
|
impbid |
|