Metamath Proof Explorer


Theorem hlress

Description: The scalar field of a subcomplex Hilbert space contains RR . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses hlress.f F = Scalar W
hlress.k K = Base F
Assertion hlress W ℂHil K

Proof

Step Hyp Ref Expression
1 hlress.f F = Scalar W
2 hlress.k K = Base F
3 1 2 hlprlem W ℂHil K SubRing fld fld 𝑠 K DivRing fld 𝑠 K CMetSp
4 eqid fld 𝑠 K = fld 𝑠 K
5 4 resscdrg K SubRing fld fld 𝑠 K DivRing fld 𝑠 K CMetSp K
6 3 5 syl W ℂHil K