Metamath Proof Explorer


Theorem hlsupr

Description: A Hilbert lattice has the superposition property. Theorem 13.2 in Crawley p. 107. (Contributed by NM, 30-Jan-2012)

Ref Expression
Hypotheses hlsupr.l ˙ = K
hlsupr.j ˙ = join K
hlsupr.a A = Atoms K
Assertion hlsupr K HL P A Q A P Q r A r P r Q r ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 hlsupr.l ˙ = K
2 hlsupr.j ˙ = join K
3 hlsupr.a A = Atoms K
4 eqid Base K = Base K
5 4 1 2 3 hlsuprexch K HL P A Q A P Q r A r P r Q r ˙ P ˙ Q r Base K ¬ P ˙ r P ˙ r ˙ Q Q ˙ r ˙ P
6 5 simpld K HL P A Q A P Q r A r P r Q r ˙ P ˙ Q
7 6 imp K HL P A Q A P Q r A r P r Q r ˙ P ˙ Q