Metamath Proof Explorer


Theorem hlsupr2

Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses hlsupr2.j ˙ = join K
hlsupr2.a A = Atoms K
Assertion hlsupr2 K HL P A Q A r A P ˙ r = Q ˙ r

Proof

Step Hyp Ref Expression
1 hlsupr2.j ˙ = join K
2 hlsupr2.a A = Atoms K
3 eqid K = K
4 3 1 2 hlsupr K HL P A Q A P Q r A r P r Q r K P ˙ Q
5 4 ex K HL P A Q A P Q r A r P r Q r K P ˙ Q
6 simpl1 K HL P A Q A r A K HL
7 hlcvl K HL K CvLat
8 6 7 syl K HL P A Q A r A K CvLat
9 simpl2 K HL P A Q A r A P A
10 simpl3 K HL P A Q A r A Q A
11 simpr K HL P A Q A r A r A
12 2 3 1 cvlsupr3 K CvLat P A Q A r A P ˙ r = Q ˙ r P Q r P r Q r K P ˙ Q
13 8 9 10 11 12 syl13anc K HL P A Q A r A P ˙ r = Q ˙ r P Q r P r Q r K P ˙ Q
14 13 rexbidva K HL P A Q A r A P ˙ r = Q ˙ r r A P Q r P r Q r K P ˙ Q
15 ne0i P A A
16 15 3ad2ant2 K HL P A Q A A
17 r19.37zv A r A P Q r P r Q r K P ˙ Q P Q r A r P r Q r K P ˙ Q
18 16 17 syl K HL P A Q A r A P Q r P r Q r K P ˙ Q P Q r A r P r Q r K P ˙ Q
19 14 18 bitrd K HL P A Q A r A P ˙ r = Q ˙ r P Q r A r P r Q r K P ˙ Q
20 5 19 mpbird K HL P A Q A r A P ˙ r = Q ˙ r